
Python: module cdms.cache

cdms.cache index
CDMS cache management and file movement objects

Modules
cdms.cdmsobj
cdms.cdurllib
errno

os
shelve
sys

tempfile
time
urlparse

Classes

Cache

class Cache
A simple data cache

Methods defined here:

__init__(self)

clean(self)
Clean pending read notifications.

copyFile(self, fromURL, filekey, lcpath=None, userid=None, useReplica=None)
Copy the file <fromURL> into the cache. Return the result path.

For request manager transfers, lcpath is the logical collection path,
<userid> is the string user ID, <useReplica> is true iff the request manager should
search the replica catalog for the actual file to transfer.

delete(self)
Delete the cache.

deleteEntry(self, filekey)
Delete a cache index entry.

get(self, filekey)
Get the path associated with <filekey>, or None if not present.

getFile(self, fromURL, filekey, naptime=5, maxtries=60, lcpath=None, userid=None, useReplica=None)

1/3

Get the file with <fileURL>. If the file is in the cache, read it.
If another process is transferring it into the cache, wait for the
transfer to complete. <naptime> is the number of seconds between
retries, <maxtries> is the maximum number of retries.
Otherwise, copy it from the remote file.

<filekey> is the cache index key. A good choice is (datasetDN, filename)
where datasetDN is the distinguished name of the dataset, and filename
is the name of the file within the dataset.

For request manager transfers, <lcpath> is the logical collection path,
<userid> is the user string ID, <useReplica> is true iff the request manager should
search the replica catalog for the actual file to transfer.

Returns the path of a file in the cache.

Note: The function does not guarantee that the file is still in the cache
by the time it returns.

put(self, filekey, path)
cache[filekey] = path

Data and other attributes defined here:

indexpath = None

Functions

copyFile(fromURL, toURL, callback=None, lcpath=None, userid=None, useReplica=1)
Copy file <fromURL> to local file <toURL>. For FTP transfers, if cache._useWindow is true,
display a progress dialog, otherwise just print progress messages.

For request manager transfers, <lcpath> is the logical collection distinguished name,
<userid> is the string user ID, <useReplica> is true iff the request manager should
search the replica catalog for the actual file to transfer.

lock(filename)
Acquire a file−based lock with the given name.
Usage: lock(filename)
If the function returns, the lock was acquired successfully.
Note: This function is UNIX−specific.
Note: It is important to delete the lock via unlock() if the process
 is interrupted, otherwise subsequent locks will fail.

lockpath(filename)
Generate the pathname of a lock. Creates the directory containing the lock
if necessary.
Usage: lockpath(filename)

2/3

unlock(filename)
Delete a file−based lock with the given name.
Usage:unlock(filename)
If the function returns, the lock was successfully deleted.
Note: This function is UNIX−specific.

useGlobusTransfer()
Specify that file transfers should use the Globus storage API (SC−API). See usePythonTransfer.

usePythonTransfer()
Specify that file transfers should use the Python libraries urllib, ftplib. See useGlobusTransfer.

useRequestManagerTransfer()

useTTY()
Informational messages such as FTP status should be sent to the terminal. See useWindow.

useWindow()
Specify that dialog windows should be used if possible. Do not call this directly, use
gui.setProgressParent instead. See useTTY.

Data
GlobusNotSupported = 'Globus interface not supported'
LockError = 'Lock error:'
MethodNotImplemented = 'Method not yet implemented'
RequestManagerNotSupported = 'Request manager interface not supported (module reqm not
found)'
SchemeNotSupported = 'Scheme not supported: '
TimeOutError = 'Wait for read completion timed out:'

3/3

	PCMDI Software Portal - Python: module cdms.cache

